本文调查了美国境内自动驾驶汽车进行的最后一英里交付的最终用户接受。总共向296名参与者介绍了有关该技术的信息,然后要求填写有关他们的看法的调查表,以评估他们有关接受的行为意图。采用了部分最小二乘风味(PLS-SEM)的结构方程模型来分析收集的数据。结果表明,该技术的有用性在最终用户接受决策中起着最大作用,随后是他人的影响,然后通过与技术互动而获得的享受。此外,对使用自动递送工具进行最后一英里交付的风险的看法导致接受程度减少。但是,大多数参与者并未认为使用该技术具有风险。本文总结了我们的发现对各个利益相关者的影响,并提出了这一研究领域的下一步。
translated by 谷歌翻译
An increasing number of public datasets have shown a marked clinical impact on assessing anatomical structures. However, each of the datasets is small, partially labeled, and rarely investigates severe tumor subjects. Moreover, current models are limited to segmenting specific organs/tumors, which can not be extended to novel domains and classes. To tackle these limitations, we introduce embedding learned from Contrastive Language-Image Pre-training (CLIP) to segmentation models, dubbed the CLIP-Driven Universal Model. The Universal Model can better segment 25 organs and 6 types of tumors by exploiting the semantic relationship between abdominal structures. The model is developed from an assembly of 14 datasets with 3,410 CT scans and evaluated on 6,162 external CT scans from 3 datasets. We rank first on the public leaderboard of the Medical Segmentation Decathlon (MSD) and achieve the state-of-the-art results on Beyond The Cranial Vault (BTCV). Compared with dataset-specific models, the Universal Model is computationally more efficient (6x faster), generalizes better to CT scans from varying sites, and shows stronger transfer learning performance on novel tasks. The design of CLIP embedding enables the Universal Model to be easily extended to new classes without catastrophically forgetting the previously learned classes.
translated by 谷歌翻译
The number of international benchmarking competitions is steadily increasing in various fields of machine learning (ML) research and practice. So far, however, little is known about the common practice as well as bottlenecks faced by the community in tackling the research questions posed. To shed light on the status quo of algorithm development in the specific field of biomedical imaging analysis, we designed an international survey that was issued to all participants of challenges conducted in conjunction with the IEEE ISBI 2021 and MICCAI 2021 conferences (80 competitions in total). The survey covered participants' expertise and working environments, their chosen strategies, as well as algorithm characteristics. A median of 72% challenge participants took part in the survey. According to our results, knowledge exchange was the primary incentive (70%) for participation, while the reception of prize money played only a minor role (16%). While a median of 80 working hours was spent on method development, a large portion of participants stated that they did not have enough time for method development (32%). 25% perceived the infrastructure to be a bottleneck. Overall, 94% of all solutions were deep learning-based. Of these, 84% were based on standard architectures. 43% of the respondents reported that the data samples (e.g., images) were too large to be processed at once. This was most commonly addressed by patch-based training (69%), downsampling (37%), and solving 3D analysis tasks as a series of 2D tasks. K-fold cross-validation on the training set was performed by only 37% of the participants and only 50% of the participants performed ensembling based on multiple identical models (61%) or heterogeneous models (39%). 48% of the respondents applied postprocessing steps.
translated by 谷歌翻译
Background: Encouraged by the success of pretrained Transformer models in many natural language processing tasks, their use for International Classification of Diseases (ICD) coding tasks is now actively being explored. In this study, we investigate three types of Transformer-based models, aiming to address the extreme label set and long text classification challenges that are posed by automated ICD coding tasks. Methods: The Transformer-based model PLM-ICD achieved the current state-of-the-art (SOTA) performance on the ICD coding benchmark dataset MIMIC-III. It was chosen as our baseline model to be further optimised. XR-Transformer, the new SOTA model in the general extreme multi-label text classification domain, and XR-LAT, a novel adaptation of the XR-Transformer model, were also trained on the MIMIC-III dataset. XR-LAT is a recursively trained model chain on a predefined hierarchical code tree with label-wise attention, knowledge transferring and dynamic negative sampling mechanisms. Results: Our optimised PLM-ICD model, which was trained with longer total and chunk sequence lengths, significantly outperformed the current SOTA PLM-ICD model, and achieved the highest micro-F1 score of 60.8%. The XR-Transformer model, although SOTA in the general domain, did not perform well across all metrics. The best XR-LAT based model obtained results that were competitive with the current SOTA PLM-ICD model, including improving the macro-AUC by 2.1%. Conclusion: Our optimised PLM-ICD model is the new SOTA model for automated ICD coding on the MIMIC-III dataset, while our novel XR-LAT model performs competitively with the previous SOTA PLM-ICD model.
translated by 谷歌翻译
Polypharmacy, most often defined as the simultaneous consumption of five or more drugs at once, is a prevalent phenomenon in the older population. Some of these polypharmacies, deemed inappropriate, may be associated with adverse health outcomes such as death or hospitalization. Considering the combinatorial nature of the problem as well as the size of claims database and the cost to compute an exact association measure for a given drug combination, it is impossible to investigate every possible combination of drugs. Therefore, we propose to optimize the search for potentially inappropriate polypharmacies (PIPs). To this end, we propose the OptimNeuralTS strategy, based on Neural Thompson Sampling and differential evolution, to efficiently mine claims datasets and build a predictive model of the association between drug combinations and health outcomes. We benchmark our method using two datasets generated by an internally developed simulator of polypharmacy data containing 500 drugs and 100 000 distinct combinations. Empirically, our method can detect up to 33\% of PIPs while maintaining an average precision score of 99\% using 10 000 time steps.
translated by 谷歌翻译
The most useful data mining primitives are distance measures. With an effective distance measure, it is possible to perform classification, clustering, anomaly detection, segmentation, etc. For single-event time series Euclidean Distance and Dynamic Time Warping distance are known to be extremely effective. However, for time series containing cyclical behaviors, the semantic meaningfulness of such comparisons is less clear. For example, on two separate days the telemetry from an athlete workout routine might be very similar. The second day may change the order in of performing push-ups and squats, adding repetitions of pull-ups, or completely omitting dumbbell curls. Any of these minor changes would defeat existing time series distance measures. Some bag-of-features methods have been proposed to address this problem, but we argue that in many cases, similarity is intimately tied to the shapes of subsequences within these longer time series. In such cases, summative features will lack discrimination ability. In this work we introduce PRCIS, which stands for Pattern Representation Comparison in Series. PRCIS is a distance measure for long time series, which exploits recent progress in our ability to summarize time series with dictionaries. We will demonstrate the utility of our ideas on diverse tasks and datasets.
translated by 谷歌翻译
Deepfakes are computationally-created entities that falsely represent reality. They can take image, video, and audio modalities, and pose a threat to many areas of systems and societies, comprising a topic of interest to various aspects of cybersecurity and cybersafety. In 2020 a workshop consulting AI experts from academia, policing, government, the private sector, and state security agencies ranked deepfakes as the most serious AI threat. These experts noted that since fake material can propagate through many uncontrolled routes, changes in citizen behaviour may be the only effective defence. This study aims to assess human ability to identify image deepfakes of human faces (StyleGAN2:FFHQ) from nondeepfake images (FFHQ), and to assess the effectiveness of simple interventions intended to improve detection accuracy. Using an online survey, 280 participants were randomly allocated to one of four groups: a control group, and 3 assistance interventions. Each participant was shown a sequence of 20 images randomly selected from a pool of 50 deepfake and 50 real images of human faces. Participants were asked if each image was AI-generated or not, to report their confidence, and to describe the reasoning behind each response. Overall detection accuracy was only just above chance and none of the interventions significantly improved this. Participants' confidence in their answers was high and unrelated to accuracy. Assessing the results on a per-image basis reveals participants consistently found certain images harder to label correctly, but reported similarly high confidence regardless of the image. Thus, although participant accuracy was 62% overall, this accuracy across images ranged quite evenly between 85% and 30%, with an accuracy of below 50% for one in every five images. We interpret the findings as suggesting that there is a need for an urgent call to action to address this threat.
translated by 谷歌翻译
Objective: Thigh muscle group segmentation is important for assessment of muscle anatomy, metabolic disease and aging. Many efforts have been put into quantifying muscle tissues with magnetic resonance (MR) imaging including manual annotation of individual muscles. However, leveraging publicly available annotations in MR images to achieve muscle group segmentation on single slice computed tomography (CT) thigh images is challenging. Method: We propose an unsupervised domain adaptation pipeline with self-training to transfer labels from 3D MR to single CT slice. First, we transform the image appearance from MR to CT with CycleGAN and feed the synthesized CT images to a segmenter simultaneously. Single CT slices are divided into hard and easy cohorts based on the entropy of pseudo labels inferenced by the segmenter. After refining easy cohort pseudo labels based on anatomical assumption, self-training with easy and hard splits is applied to fine tune the segmenter. Results: On 152 withheld single CT thigh images, the proposed pipeline achieved a mean Dice of 0.888(0.041) across all muscle groups including sartorius, hamstrings, quadriceps femoris and gracilis. muscles Conclusion: To our best knowledge, this is the first pipeline to achieve thigh imaging domain adaptation from MR to CT. The proposed pipeline is effective and robust in extracting muscle groups on 2D single slice CT thigh images.The container is available for public use at https://github.com/MASILab/DA_CT_muscle_seg
translated by 谷歌翻译
Like fingerprints, cortical folding patterns are unique to each brain even though they follow a general species-specific organization. Some folding patterns have been linked with neurodevelopmental disorders. However, due to the high inter-individual variability, the identification of rare folding patterns that could become biomarkers remains a very complex task. This paper proposes a novel unsupervised deep learning approach to identify rare folding patterns and assess the degree of deviations that can be detected. To this end, we preprocess the brain MR images to focus the learning on the folding morphology and train a beta-VAE to model the inter-individual variability of the folding. We compare the detection power of the latent space and of the reconstruction errors, using synthetic benchmarks and one actual rare configuration related to the central sulcus. Finally, we assess the generalization of our method on a developmental anomaly located in another region. Our results suggest that this method enables encoding relevant folding characteristics that can be enlightened and better interpreted based on the generative power of the beta-VAE. The latent space and the reconstruction errors bring complementary information and enable the identification of rare patterns of different nature. This method generalizes well to a different region on another dataset. Code is available at https://github.com/neurospin-projects/2022_lguillon_rare_folding_detection.
translated by 谷歌翻译
Pre-trained protein language models have demonstrated significant applicability in different protein engineering task. A general usage of these pre-trained transformer models latent representation is to use a mean pool across residue positions to reduce the feature dimensions to further downstream tasks such as predicting bio-physics properties or other functional behaviours. In this paper we provide a two-fold contribution to machine learning (ML) driven drug design. Firstly, we demonstrate the power of sparsity by promoting penalization of pre-trained transformer models to secure more robust and accurate melting temperature (Tm) prediction of single-chain variable fragments with a mean absolute error of 0.23C. Secondly, we demonstrate the power of framing our prediction problem in a probabilistic framework. Specifically, we advocate for the need of adopting probabilistic frameworks especially in the context of ML driven drug design.
translated by 谷歌翻译